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BACKGROUND: Unintentional leakage from the mouth or around the mask may lead to
cessation of CPAP treatment; however, the causes of unintentional leaks are poorly under-
stood. The objectives of this study were (1) to identify determining factors of unintentional
leakage and (2) to determine the effect of the type of mask (nasal/oronasal) used on unin-
tentional leakage.

METHODS: Seventy-four polysomnograms from patients with OSA syndrome treated with
auto-CPAP were analyzed (23 women; 56 � 13 years; BMI, 32.9 kg/m2 (range, 29.0-38.0 kg/
m2). Polysomnographic recordings were obtained under auto-CPAP, and mandibular
behavior was measured with a magnetic sensor. After sleep and respiratory scoring, poly-
somnographic signals were computed as mean values over nonoverlapping 10-s intervals.
The presence/absence of unintentional leakage was dichotomized for each 10-s interval (yes/
no). Univariate and multivariate conditional regression models estimated the risk of unin-
tentional leaks during an interval “T” based on the explanatory variables from the previous
interval “T-1.” A sensitivity analysis for the type of mask was then conducted.

RESULTS: The univariate analysis showed that mandibular lowering (mouth opening), a high
level of CPAP, body position (other than supine), and rapid eye movement (REM) sleep
increased the risk of unintentional leaks and microarousal decreased it. In the multivariate
analysis, the same variables remained independently associated with an increased risk of
unintentional leakage. The sensitivity analysis showed that oronasal masks reduced the risk of
unintentional leaks in cases of mouth opening and REM sleep.

CONCLUSIONS: Mouth opening, CPAP level, sleep position, and REM sleep independently
contribute to unintentional leakage. These results provide a strong rationale for the definition
of phenotypes and the individual management of leaks during CPAP treatment.
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CPAP is the first-line treatment for moderate to severe
OSA syndrome.1 Although adherence to CPAP is crucial
to improve symptoms2 and prevent cardiometabolic
consequences,3-5 > 50% of patients discontinue or
comply poorly with the treatment over the long term
(< 4 h/night).6,7 Although the causes of CPAP cessation
are multifactorial,8,9 unintentional leakage from the
mouth or around the mask is common with CPAP
therapy and may contribute to nonadherence to
treatment.10,11 However, the causes of unintentional
leaks are poorly understood.

Technological innovations are constantly being
developed to improve the sealing of interfaces (eg, shape
of mask, different breathing routes, materials, ergonomic
straps, rotating elbows, lighter masks) to reduce
unintentional leakage. Likewise, accessories such as chin
straps and heated humidification systems have also been
reported to limit the magnitude of unintentional
leakage12,13 and its consequences.14,15 However, some
unexpected effects have been found. For instance,
oronasal masks are usually proposed to reduce mouth-
related leakage16; however, they have paradoxically been
found to be associated with a higher magnitude of
unintentional leakage than found with nasal masks.17

Thus technological improvements may not actually
overcome the problem of unintentional leakage. Robust
chestjournal.org
methods to identify the determining factors of
unintentional leakage are required before taking any
action.

The determining factors of an unintentional leak can be
split into two categories: (1) patient-related factors, such
as facial or pharyngeal anatomy,18 age,13,19 BMI,20,21 and
concomitant comorbidities (eg, COPD)22 that cannot be
changed and (2) factors that evolve overnight such as
sleep stage, body position, and mouth opening, which
can be altered. The frequent loss of tonic activity of the
masseters23,24 contributes to a progressive increase in
mouth opening while sleep deepens,25,26 favoring
unintentional leaks during CPAP. Although there are no
robust data to demonstrate that sleep position affects
mouth opening,26,27 different body positions might
impact unintentional leakage by displacing the mask and
changing upper airway resistance.

The aim of this study was to identify the determining
factors of unintentional leakage throughout a whole
night of CPAP treatment. We used objective
measurements of unintentional leakage and mandibular
movement to phenotype unintentional leaks using an
innovative data analysis. The secondary aim was to
investigate whether the type of mask (nasal vs oronasal)
influences the determining factors.
Methods
Centralized analysis of polysomnographic recordings was
performed during auto-CPAP with a magnetic movement sensor
to measure mandibular behavior. The study was approved by
the local ethical committee (Institutional Review Board No.
00004890).

Data Collection

Between July 2015 and October 2015, consecutive adult patients
diagnosed with moderate to severe OSA syndrome (apnea-
hypopnea index [AHI] > 15/h) who attended in-laboratory
polysomnography (PSG) under CPAP were included (Saint
Elisabeth Namur clinic, Liège Belgium). In Belgium, after OSA
syndrome is diagnosed, in-laboratory PSG during CPAP is
required to demonstrate treatment efficacy in order for the
social security system to reimburse the treatment. In practice,
patients who are prescribed CPAP are initiated with auto-CPAP
devices at home a few weeks before in-laboratory PSG under
CPAP.

Medical history, anthropometric data, and OSA syndrome severity
were collected from patients’ medical charts at the time of
diagnosis of OSA syndrome. The Epworth Sleepiness Scale and a
self-reported evaluation of nasal obstruction and mouth dryness
(visual numeric scale: 1 ¼ absence of symptoms to 5 ¼severe
symptoms) were performed prior to the in-laboratory PSG
under CPAP. The type of mask used during CPAP titration was
documented.
Raw polysomnographic data under auto-CPAP were extracted in a
European Data File format for subsequent transformation and
analysis (see details further on and Fig 1).

Polysomnographic Features

PSG (B3iP, Medatec) was performed with the same auto-CPAP (S9
Autoset, RESMED). During PSG, patients used their own masks
(nasal or oronasal mask). The parameters monitored included
electroencephalography (Fz-Aþ,Cz-Aþ, Pz-Aþ), right and
left electrooculography, submental electromyography, tibial
electromyography, and chest and abdominal wall motion by
respiratory inductance plethysmography (SleepSense S.L.P. Inc.);
airflow, CPAP level, and unintentional leakage were obtained from
the CPAP device; and arterial oxygen saturation was measured by a
digital oximeter that displayed the pulse waveform (Nonin, Nonin
Medical).

A midsagittal mandibular magnetic movement sensor (Brizzy
Nomics) was used to measure the distance in millimeters between
two parallel coupled resonant circuits placed on the forehead and
the chin (Fig 1).28 The transmitter generates a pulsed magnetic
wave of low energy at 10 Hz. The change in the magnetic field is
inversely related to the cube of the distance between the chin and
forehead probes. The resolution of the measurement was 0.1 mm.
This mandibular movement sensor was connected to an electronic
module before being transmitted to the polysomnographic record.

The mandibular movement signal was automatically analyzed using
mathematical morphology to identify oscillations relating to
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CPAP
1 - Data acquisition

2 - Raw data file

3 - Data transformation and final analysis file
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Figure 1 – Methods. PSG ¼ polysomnography.
respiration (0.15-0.5Hz). The inspiratory and expiratory peaks were
identified, and the corresponding lower and upper envelope signals
were constructed by joining these peaks using linear interpolation
(e-Fig 1). The difference between these two envelope signals
defined the peak-to-peak amplitude of the oscillations. Mandibular
oscillations have been shown to be a reliable marker of respiratory
effort.29 The sum of the two envelope signals divided by two (ie,
the mean values of corresponding upper and lower envelope
samples) defined the baseline of the signal, which constituted the
mandibular lowering: the more negative the signal, the lower the
mandibular position and the greater the mouth opening.

PSG scoring was performed manually by two readers (S. D., V. C.)
according to standard criteria.30 A minimum 4-hour duration with a
good quality signal was required.
836 Original Research
Signal Processing and Data Management

Figure 1 shows the procedure for signal processing and analysis.
Continuous signals (mouth opening, mandibular oscillations,
unintentional leakage, and CPAP level) were down-sampled from
500 to 10 samples/s using a 4.4-Hz frequency cutoff low-pass anti-
aliasing finite impulse response filter. They were then computed as
mean values over nonoverlapping 10-s intervals. Categorical data
(sleep position and sleep stage), as well as dichotomous data
(presence of respiratory events or microarousals, or both: yes/no),
were also reported for intervals of 10 s. Finally, for each patient,
PSG recordings were summarized in a data file that included eight
variables of interest (1) mouth opening, (2) mandibular
oscillations, (3) unintentional leakage, (4) CPAP level, (5) body
position, (6) sleep stage, (7) occurrence of respiratory events (yes/
no), and (8) microarousals (yes/no); a single value was analyzed
for each variable for every consecutive 10-s interval. Each
mandibular movement signal was inspected visually to remove
false or noncontributive information. The main reasons for
discarding signals were awake period, sleep without CPAP, and
aberrant mandibular movements owing to sensor misplacement.
These periods of sleep were removed from the final file before the
statistical analysis.

Statistical Analysis
Data were analyzed using SAS software, version 9.4 (SAS Institute).
Continuous data were expressed as means (SD) when normally
distributed and medians (interquartile range) when not normally
distributed; categorical data were expressed as percentages.

First Study Objective
Univariate conditional regression models (one strata per patient)
were used to estimate the risk of leakage during a “T interval”
using the following variables predefined from the previous interval
(“T-1”): mouth opening (mandibular lowering), mandibular
oscillations, CPAP level, body position, sleep stage, respiratory
event and microarousal (Fig 1). Since there are no reports of a
clinically significant threshold of unintentional leakage in the
literature, the presence of unintentional leakage in an interval was
classified in a dichotomous manner (yes or no: > 0 L/min or ¼ 0
L/min). A subanalysis was also carried out using the thresholds
recommended by the manufacturer for unintentional leaks ($ 24
L/min or < 24 L/min for nasal masks and $ 36 L/min or < 36 L/
min for oronasal masks).31 Continuous variables were
dichotomized to the median values (median values were
individualized for every patient), except mandibular oscillation for
which a threshold value of 0.3 mm was chosen.29 All variables that
were significant in the univariate analysis were then entered into a
multivariate conditional regression model.

Secondary Study Objective

The secondary objective was to investigate if the mask type influenced
the risk of unintentional leakage. A sensitivity analysis was performed
on the type of mask in the first multivariate model (with a threshold of
leakage: yes or no, > 0 L/min or ¼ 0L/min).

Finally a Mann-Whitney test was used to compare the proportion of
time spent with unintentional leaks during the night between both
interfaces.

Sample Size Estimation

No previous data from which sample size could be calculated were
found. We therefore aimed to include 15 to 20 patients with
oronasal masks (sample size equivalent to previous studies
comparing different types of masks17). Considering that about
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25% of patients use oronasal masks9, we estimated that at least 70
consecutive patients would need to be included in the analysis.

Other Analyses

The characteristics of the patients with nasal masks vs those with
oronasal masks (Tables 1 and 2) as well as the characteristics of the
TABLE 1 ] Patient Characteristics

Variable All Patients (N ¼ 74)a Oro

Anthropometric data

Age, y 55.8 � 13.0

Sex, female, % 31

BMI, kg/m2 32.9 (29.0-38.0)

Current smoker or ex-smoker, % 8

Sleep apnea severity at diagnosis

AHI (No./h) at diagnosis 44.3 (25.9-61.8)

Epworth Sleepiness Scale, 1-24 12 � 5

Nasal obstruction, 1-5 2 (1-3)

Mouth dryness, 1-5 2 (1-3)

Comorbidity

Treated for hypertension, % 41

Treated for diabetes, % 14

Treated for hypercholesterolemia, % 33

Treated with inhaled pulmonary
drugs agents, %

9

Treated with psychoactive drugs, % 24

Means � SD are provided for normally distributed variables; Medians (quartile
aMask type from two patients was missing.

chestjournal.org
patients with a high percentage of sleep time with unintentional
leakage vs a low percentage of sleep time with unintentional leakage
(e-Table 1) were compared using a Student unpaired t test for
continuous variables with a normal distribution, a Mann-Whitney U
test for other continuous variables, and a c2 test for discrete variables
(or a Fisher exact test when expected counts were greater than five).
Results
Over a 4-month period, 89 consecutive adult patients
underwent full in-laboratory PSG under auto-CPAP.
Ten recordings could not be used because of technical
problems (eight due to failure of the mandibular signal
and two due to failure of electroencephalography),
four polysomnographic studies were carried out under
fixed pressure and one was carried out in a bilevel
mode; thus 74 polysomnographic recordings were
analyzed.

Patient Characteristics and Treatment Parameters

Patient characteristics are presented in Table 1 and
treatment parameters during the PSG can be seen in
Table 2. The sample studied was representative of usual
OSA syndrome groups treated with auto-CPAP.

Variables Associated With Unintentional Leak

Table 3 shows the factors associated with the presence of
unintentional leakage during sleep in the univariate
analysis. Mouth opening, CPAP level, body position,
and rapid eye movement (REM) sleep were significantly
associated with an increased risk of unintentional
leakage during sleep. Microarousals were associated with
a decreased risk of unintentional leakage. In the
multivariate analysis (Table 4), the same variables
remained independently associated with an increased
risk of unintentional leakage. Microarousals were
independently associated with a decreased risk of
unintentional leakage.

Comparison of the main characteristics of the patients
who had a high vs low percentage of sleep time with
unintentional leakage (defined as $ 53.9% or < 53.9%,
respectively, corresponding to the median percentage of
sleep time with unintentional leaks) revealed that
patients with a higher percentage of sleep time with
unintentional leakage were older. No other factors
differed between these two groups (e-Table 1).

The results of the subanalyses based on the
manufacturer’s recommended thresholds for
unintentional leakage are shown in e-Tables 2 and 3.
nasal Mask Group (n ¼ 14) Nasal Mask Group (n ¼ 58) P Value

51.7 � 13.3 56.9 � 13.3 .20

50 28 .11

37.8 (32.9-4.3) 32.5 (28.4-37.3) .016

0 10 .57

45.7 (24.9-63.8) 44.4 (29.4-6.2) .80

13 � 5 12 � 5 .50

3 (2-5) 2 (1-3) .042

2 (2-4) 2 (1-3) .20

58 36 .15

33 9 .05

50 27 .17

25 4 .06

25 24 .99

1-quartile 3) are provided for variables that are not normally distributed.
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TABLE 2 ] Sleep and Treatment Parameters

Variable All Patients (N ¼ 74)a
Oronasal Mask Group

(n ¼14) Nasal Mask Group (n ¼ 58) P Value

TST, min 433.6 � 96.6 440.7 � 59.0 434.1 � 104.8 .75

Stages 1 and 2, % TST 58.3 � 14.7 59.8 � 12.5 58.0 � 15.1 .68

Stages 3 and 4, % TST 24.1 � 11.7 20.9 � 10.5 24.6 � 11.9 .29

REM, % TST 17.6 � 7.9 19.3 � 6.7 17.4 � 8.2 .42

Arousal index, n/h 24.3 (15.4-35.1) 23.7 (16.9-32.4) 24.3 (14.3-38.5) .99

AHI, events/h 11.5 (5.0-19.2) 17.5 (8.7-22.2) 10.3 (4.5-16.7) .19

Supine position, % TST 66.7 (39.5-95.5) 63.6 (36.7-81.3) 67.5 (40.4-96.6) .59

Mean CPAP pressure, cm H2O 8.5 � 2.6 8.9 � 2.8 8.5 � 2.6 .65

Unintentional leakage,
median/patient, L/min

0.5 (0.0-4.2) 0.6 (0.0-2.9) 0.5 (0.0-4.9) .89

Mouth opening (mm)
median/patient

–13.1 (–16.9 to 8.3) –16.3 (–18.7 to14.2) –11.3 (–16.2 to 6.7) .04

Means � SD are provided for normally distributed variables; Medians (quartile 1; quartile 3) are provided for variables that did not have a normal dis-
tribution. AHI ¼ apnea-hypopnea index; REM ¼ rapid eye movement; TST ¼ total sleep time.
aMask type from two patients was missing.
Mouth opening, CPAP pressure, and REM sleep
remained significantly associated with an increased
risk of unintentional leakage using these thresholds.
Microarousals were associated with a decreased risk of
unintentional leakage. In contrast, the presence of a
residual event at T-1 became associated with an
increased risk of unintentional leakage. Mandibular
oscillation ($ 0.3 mm) was associated with a reduced
risk of unintentional leakage. Time spent with
unintentional leakage due to mouth opening using the
thresholds of 24 L/min and 36 L/min for nasal and
oronasal masks, respectively, are shown in e-Figure 2.

Impact of the Type of Mask on
Unintentional Leakage

Figure 2 shows the distribution of time spent with
unintentional leakage during sleep according to the type
of mask. Of the total group, 28.4% had a low percentage
of sleep time with unintentional leakage (0%-24% of total
TABLE 3 ] Univariate Conditional Regression Analysis

Predictive Variables From Interval T-1 O

Mouth openinga # median vs > median/
patient, mm

1.4

Mean CPAP pressure,$median vs <median/
patient, cm H2O

2.4

Body position during sleep, other vs supine 1.2

Sleep stage, REM vs other 2.8

Microarousal, yes vs no 0.6

Mandibular oscillation, $ 0.3 vs < 0.3, mm 0.9

Respiratory event, yes vs no 1.0

aMandibular lowering.
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sleep time), and 29.7% had a high percentage of sleep
time with unintentional leakage (75%-100% of total sleep
time). The time spent with unintentional leakage did not
differ between the two mask types (P ¼ .67). Figure 2B
depicts the time spent with unintentional leakage with
respect to mouth opening for each type of mask.

Figure 3 displays the sensitivity analysis performed in
the multivariate model for the type of mask (nasal and
oronasal). Oronasal masks were associated with a lower
risk of unintentional leakage in cases of mouth opening
(mandibular lowering less than or equal to median value
per patient) and REM sleep compared with nasal masks.

Discussion
The issue of unintentional leakage during CPAP
treatment has mainly been considered as a technological
challenge to be resolved. This study is original because it
involved the objective measurement of determining
R 95% CI P Value

6 1.42-1.49 < .0001

1 2.35-2.47 < .0001

8 1.24-1.32 < .0001

3 2.74-2.93 < .0001

8 0.65-0.71 < .0001

9 0.96-1.03 .71

1 0.96-1.07 .65
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TABLE 4 ] Multivariate Conditional Regression Analysis

Predictive Variables From Interval T-1 OR 95% CI P Value

Mouth opening,a # median vs >

median/patient, mm
1.41 1.38-1.45 < .0001

Mean CPAP pressure, $ median
vs < median/patient, cm H2O

2.21 2.15-2.27 < .0001

Body position during sleep,
other vs supine

1.50 1.45-1.55 < .0001

Sleep stage, REM vs other 2.23 2.15-2.30 < .0001

Microarousal, yes vs no 0.67 0.64-0.7 < .0001

aMandibular lowering.
factors of unintentional leakage. The strengths of the study
are the use of a novel methodology to characterize and
analyze the overnight determinants of unintentional
leakage. The results identified mouth opening, CPAP
level, nonsupine position, and REM sleep as determining
factors. This is the first study, to our knowledge, to identify
the specific situations during which unintentional leakage
was reduced by use of an oronasal mask (ie, mouth
opening and REM sleep). These results will be useful for
clinicians to propose individualized management
strategies to reduce this frequent adverse effect of CPAP,
which should improve adherence to treatment.

Mouth opening is widely identified by clinicians as a
cause of unintentional leakage. Mouth opening can be
associated with a loss of tonic activity of the masseter
muscles from sleep onset to deep sleep (“passive
35
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phenomenon”),23,24 but it can also be triggered by
persistent inspiratory resistance during obstructive
events.32,33 During an obstructive event, it is likely that
the suprahyoid muscles (mylohyoid and geniohyoid)26,33

are recruited, leading to progressive mouth opening. We
expected that an increase in respiratory effort would
increase the risk of unintentional leakage; however, the
results did not demonstrate any association between
mandibular oscillations > 0.3 mm (a surrogate marker
of increased respiratory effort) and unintentional
leakage. The 0.3-mm threshold has mainly been
reported for children and during diagnostic sleep
studies; however, it may be not sensitive enough in adult
patients using CPAP.29 However, microarousal, which is
mainly a consequence of persistent respiratory
effort,34,35 reduced the risk of unintentional leakage
when upper airway resistance was normalized. It could
60

55

50

45

40

35

30

25

20

15

10

5

0

In
te

rv
a

ls
 o

f 
1
0
 s

 w
it

h

le
a

k
 d

u
ri

n
g

 s
le

e
p

 (
%

)

Wider mouth opening

4th quartile
mouth

opening

3rd quartile
mouth

opening

2nd quartile
mouth

opening

1st quartile
mouth

opening

nasal mask

oronasal  mask

Time spent with unintentional leakage related to mouth opening for each
g and the fourth quartile represents the smallest.

839

http://chestjournal.org


1.55

1.45

1.05

1.35

Mouth opening (mm)* (≤ median vs > median/patient) Mean CPAP pressure (cm H
2
O) (≥ median vs < median/patient) 

1.25

1.15

0.95

0.85

All nasal mask oronasal mask
0.75

O
R

 (
9
5
%

 C
I)

1.65

1.6

1.35

1.55

1.5

Body position during sleep (other vs supine)

1.45

1.4

1.3

1.25

All nasal mask oronasal mask
1.2

O
R

 (
9
5
%

 C
I)

3.1

1.6

2.6

Sleep stages (REM vs other)

2.1

1.1

All nasal mask oronasal mask
0.6

O
R

 (
9
5
%

 C
I)

0.85

0.65

0.7

0.8

Microarousal (yes vs no)

0.75

0.6

All nasal mask oronasal mask
0.55

O
R

 (
9
5
%

 C
I)

2.6

2.4

1.8

2.2

2

1.6

1.4

All nasal mask oronasal mask
1.2

O
R

 (
9
5
%

 C
I)

Figure 3 – Sensitivity analysis for the type of mask (nasal vs oronasal) on the seven determining factors of unintentional leakage (with a threshold of
leakage > 0 L/min or ¼ 0 L/min). *Mandibular lowering. REM ¼ rapid eye movement.
be hypothesized that a significant respiratory effort
would progressively open the mouth, creating
unintentional leakage and that the subsequent effort-
related microarousal would promptly reduce
unintentional leakage as a result of mouth closure.29

Previous investigations have studied the relationship
between mouth opening and body position, showing that
mouth opening was influencedmore by sleep stage than by
body position.26-28 In the present study, lateral and prone
positions were found to increase the risk of unintentional
leakage, probably because ofmask displacement or traction
on theCPAP tube in these positions.Nasal obstructionmay
also be an independent determining factor of mouth
opening36 that can lead to the use of an oronasal mask. In
the present study, nasal obstruction (assessed using a visual
numeric scale) and mouth opening were significantly
greater in patients who used an oronasal mask. Moreover,
the oronasal mask itself may promote mouth opening by
displacing the jaw backward and downward.37

The specific indications for oronasal masks are still
debated.9,17,37-40 The present study showed an overall
equivalence between oronasal and nasal masks except
for the specific situations of mouth opening and REM
sleep, in which the sensitivity analysis demonstrated
fewer leaks with oronasal interfaces. This suggests that
oronasal masks could be an effective solution to reduce
unintentional leaks in such cases.
840 Original Research
This study has several limitations. First, unintentional
leakage was dichotomized as yes or no over 10-s
intervals, with no consideration of leak severity. The
cutoff (> 0 L/min) to define air leakage was arbitrary. It
could be argued that a leak of 40 L/min is clinically
different from one of 3 L/min; however, a valid
threshold above which leak becomes clinically relevant
has not yet been determined.17,31 Repeating the analysis
using the manufacturer’s recommended thresholds,
only a subgroup of patients have been included in the
analyses: 36 patients had unintentional leakage
values greater than these thresholds. The results were
concordant with the analysis using a threshold
$ 0 L/min for mouth opening, CPAP pressure, REM
sleep, and microarousals. However, the presence of a
residual event at T-1 became associated with an
increased risk of unintentional leakage. This could be
explained by the fact that during an obstructive event,
the mouth opens progressively.26,28,41 Mandibular
oscillation ($ 0.3 mm) was associated with a reduced
risk of unintentional leakage. As already discussed, the
threshold may not be sensitive enough and needs to be
investigated. These exploratory analyses and results
should therefore be interpreted with caution and
eventually revised when a clinically relevant leakage
threshold is clearly identified by the community of
physicians and researchers. Second, the magnitude of
leakage was directly obtained from the CPAP device;
however, the error in leak estimation by CPAP devices is
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currently not known.40 This may have led to some false-
positive and false-negative 10-s intervals.

Third, leakage from the mouth can occur through a very
small opening, whereas no leakage may occur with a
widely open mouth. In addition, air leaks often come
from the mask itself, particularly an oronasal mask. The
lack of a direct measurement of oral flow prevented any
distinction being made between leakage from the mouth
and leakage from the mask. However, as is very obvious
in Figure 2B, the greater the mouth opening with a nasal
mask, the higher the percentage of sleep time with
unintentional leakage.

Finally, older age was the only factor associated with a
higher percentage of sleep time with unintentional
leakage. The present data do not allow a “phenotype of
patients at risk of unintentional leakage” to be clearly
chestjournal.org
identified; specific studies including larger samples are
needed to address this important issue.17
Conclusions
This study provides an innovative method for
characterizing the determining factors of unintentional
leakage in patients with OSA syndrome treated with
CPAP. Systematic measurement of mandibular
movements during sleep studies using CPAP could
identify the specific factors responsible for unintentional
leakage in each individual patient, thus allowing
appropriate corrective measures to be proposed. Further
studies are needed to prospectively validate this model.
Interventional trials are also necessary to validate the
clinical relevance of individualized management of
unintentional leaks based on this model.
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